Skip to content

3. 模型加载

约 746 个字 310 行代码 预计阅读时间 8 分钟

模型加载库 Assimp

模型通常在 Blender、3DS Max 或者 Maya 这种专业的工具中制作,导出模型时会自动生成所有的顶点坐标、顶点发现和纹理坐标。

我们需要解析这些导出的模型文件以及提取有用的信息,将它们存储为 OpenGL 易处理的格式。

Assimp(Open Asset Import Library) 是一个非常流行的模型导入库,它能够将不同格式的模型数据解析到 Assimp 的固定数据结构,我们只需要用同一种方式访问这些即可。

当使用 Assimp 导入一个模型时,它通常会将整个模型加载进一个 Scene Object 中,其简化数据结构如下:

sceneobjectinassimp.png

1
2
3
4
git clone https://github.com/assimp/assimp.git
cd assimp
cmake CMakeLists.txt
cmake --build .

运行完上述命令后,可以在 include 文件夹中找到需要的头文件,在 bin/debug 文件夹中找到 .dll 文件,在 lib/debug 文件夹中找到 .lib 文件,将它们各自放在合适的位置。

网格类

一个 Mesh 至少需要一个顶点集、用于索引绘制的索引以及纹理形式的材质数据。我们将顶点数据和纹理数据都整理到一个结构体中:

struct Vertex {
    glm::vec3 Position;
    glm::vec3 Normal;
    glm::vec2 TexCoords;
};

struct Texture {
    unsigned int id;
    string type;
};

那么一个 Mesh 类的简单实现架构如下:

class Mesh {
    public:
        /*  网格数据  */
        vector<Vertex> vertices;
        vector<unsigned int> indices;
        vector<Texture> textures;
        /*  函数  */
        Mesh(vector<Vertex> vertices, vector<unsigned int> indices, vector<Texture> textures);
        void Draw(Shader &shader);
    private:
        /*  渲染数据  */
        unsigned int VAO, VBO, EBO;
        /*  函数  */
        void setupMesh();
};  

对于构造函数,我们只需要将传入的数据赋值到成员变量即可:

1
2
3
4
5
6
7
8
Mesh(vector<Vertex> vertices, vector<unsigned int> indices, vector<Texture> textures)
{
    this->vertices = vertices;
    this->indices = indices;
    this->textures = textures;

    setupMesh(); // 用于初始化缓存
}

初始化函数 setupMesh 则和我们之前常用的步骤相同,利用这些顶点数据和索引数据创建 VAO、VBO、EBO 等对象:

void setupMesh()
{
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);

    glBindVertexArray(VAO);
    glBindBuffer(GL_ARRAY_BUFFER, VBO);

    glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW);  

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), 
                 &indices[0], GL_STATIC_DRAW);

    // 顶点位置
    glEnableVertexAttribArray(0);   
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);
    // 顶点法线
    glEnableVertexAttribArray(1);   
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal));
    // 顶点纹理坐标
    glEnableVertexAttribArray(2);   
    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords));

    glBindVertexArray(0);
}  

C++中结构体的内存布局是连续的,因此为我们复制数据、设置顶点属性等操作带来了更好的可拓展性

由于我们在纹理的结构体中并没有专门为其存储纹理对象的名称,而是仅仅存储了纹理的类型,所以我们并不能随意的绑定它们。为了实现更高的可拓展性,我们可以对纹理命名进行一个规范限制,例如,某一个网格具有 3 个漫反射纹理和 2 个镜面反射纹理,那么着色器内的纹理采样器命名为:

1
2
3
4
5
uniform sampler2D texture_diffuse1;
uniform sampler2D texture_diffuse2;
uniform sampler2D texture_diffuse3;
uniform sampler2D texture_specular1;
uniform sampler2D texture_specular2;

那么利用字符串拼接,可以将渲染代码写作如下:

void Draw(Shader shader) 
{
    unsigned int diffuseNr = 1;
    unsigned int specularNr = 1;
    for(unsigned int i = 0; i < textures.size(); i++)
    {
        glActiveTexture(GL_TEXTURE0 + i); // 在绑定之前激活相应的纹理单元
        // 获取纹理序号(diffuse_textureN 中的 N)
        string number;
        string name = textures[i].type;
        if(name == "texture_diffuse")
            number = std::to_string(diffuseNr++);
        else if(name == "texture_specular")
            number = std::to_string(specularNr++);

        shader.setInt(("material." + name + number).c_str(), i);
        glBindTexture(GL_TEXTURE_2D, textures[i].id);
    }
    glActiveTexture(GL_TEXTURE0);

    // 绘制网格
    glBindVertexArray(VAO);
    glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0);
    glBindVertexArray(0);
}

导入模型

在上一节我们构造了一个能画出一个 Mesh 的 Mesh 类,我们需要在此基础上创建一个 model 类,要求能够通过 model.draw() 函数直接将这个模型绘制出来:

class Model
{
public:
    // model data 
    vector<Texture> textures_loaded;    // stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
    vector<Mesh>    meshes;
    string directory;
    bool gammaCorrection;

    // constructor, expects a filepath to a 3D model.
    Model(string const& path, bool gamma = false) : gammaCorrection(gamma)
    {
        loadModel(path);
    }

    // draws the model, and thus all its meshes
    void Draw(Shader& shader)
    {
        for (unsigned int i = 0; i < meshes.size(); i++)
            meshes[i].Draw(shader);
    }
}

在 Model 的成员函数 Draw 中,我们输入着色器的 ID 来调用对应着色器渲染这个 Model;而 Model 类的构造函数则被封装在 private 中,其实现如下:

private:
    // loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
    void loadModel(string const& path)
    {
        // read file via ASSIMP
        Assimp::Importer importer;
        const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_GenSmoothNormals | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);
        // check for errors
        if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
        {
            cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
            return;
        }
        // retrieve the directory path of the filepath
        directory = path.substr(0, path.find_last_of('/'));

        // process ASSIMP's root node recursively
        processNode(scene->mRootNode, scene);
    }

    // processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
    void processNode(aiNode* node, const aiScene* scene)
    {
        // process each mesh located at the current node
        for (unsigned int i = 0; i < node->mNumMeshes; i++)
        {
            // the node object only contains indices to index the actual objects in the scene. 
            // the scene contains all the data, node is just to keep stuff organized (like relations between nodes).
            aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
            meshes.push_back(processMesh(mesh, scene));
        }
        // after we've processed all of the meshes (if any) we then recursively process each of the children nodes
        for (unsigned int i = 0; i < node->mNumChildren; i++)
        {
            processNode(node->mChildren[i], scene);
        }

    }

    Mesh processMesh(aiMesh* mesh, const aiScene* scene)
    {
        // data to fill
        vector<Vertex> vertices;
        vector<unsigned int> indices;
        vector<Texture> textures;

        // walk through each of the mesh's vertices
        for (unsigned int i = 0; i < mesh->mNumVertices; i++)
        {
            Vertex vertex;
            glm::vec3 vector; // we declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
            // positions
            vector.x = mesh->mVertices[i].x;
            vector.y = mesh->mVertices[i].y;
            vector.z = mesh->mVertices[i].z;
            vertex.Position = vector;
            // normals
            if (mesh->HasNormals())
            {
                vector.x = mesh->mNormals[i].x;
                vector.y = mesh->mNormals[i].y;
                vector.z = mesh->mNormals[i].z;
                vertex.Normal = vector;
            }
            // texture coordinates
            if (mesh->mTextureCoords[0]) // does the mesh contain texture coordinates?
            {
                glm::vec2 vec;
                // a vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't 
                // use models where a vertex can have multiple texture coordinates so we always take the first set (0).
                vec.x = mesh->mTextureCoords[0][i].x;
                vec.y = mesh->mTextureCoords[0][i].y;
                vertex.TexCoords = vec;
                // tangent
                vector.x = mesh->mTangents[i].x;
                vector.y = mesh->mTangents[i].y;
                vector.z = mesh->mTangents[i].z;
                vertex.Tangent = vector;
                // bitangent
                vector.x = mesh->mBitangents[i].x;
                vector.y = mesh->mBitangents[i].y;
                vector.z = mesh->mBitangents[i].z;
                vertex.Bitangent = vector;
            }
            else
                vertex.TexCoords = glm::vec2(0.0f, 0.0f);

            vertices.push_back(vertex);
        }
        // now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
        for (unsigned int i = 0; i < mesh->mNumFaces; i++)
        {
            aiFace face = mesh->mFaces[i];
            // retrieve all indices of the face and store them in the indices vector
            for (unsigned int j = 0; j < face.mNumIndices; j++)
                indices.push_back(face.mIndices[j]);
        }
        // process materials
        aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
        // we assume a convention for sampler names in the shaders. Each diffuse texture should be named
        // as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER. 
        // Same applies to other texture as the following list summarizes:
        // diffuse: texture_diffuseN
        // specular: texture_specularN
        // normal: texture_normalN

        // 1. diffuse maps
        vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
        textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
        // 2. specular maps
        vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
        textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
        // 3. normal maps
        std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
        textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
        // 4. height maps
        std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
        textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());

        // return a mesh object created from the extracted mesh data
        return Mesh(vertices, indices, textures);
    }

    // checks all material textures of a given type and loads the textures if they're not loaded yet.
    // the required info is returned as a Texture struct.
    vector<Texture> loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
    {
        vector<Texture> textures;
        for (unsigned int i = 0; i < mat->GetTextureCount(type); i++)
        {
            aiString str;
            mat->GetTexture(type, i, &str);
            // check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
            bool skip = false;
            for (unsigned int j = 0; j < textures_loaded.size(); j++)
            {
                if (std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
                {
                    textures.push_back(textures_loaded[j]);
                    skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization)
                    break;
                }
            }
            if (!skip)
            {   // if texture hasn't been loaded already, load it
                Texture texture;
                texture.id = TextureFromFile(str.C_Str(), this->directory);
                texture.type = typeName;
                texture.path = str.C_Str();
                textures.push_back(texture);
                textures_loaded.push_back(texture);  // store it as texture loaded for entire model, to ensure we won't unnecessary load duplicate textures.
            }
        }
        return textures;
    }

从模型文件中提取纹理的文件名的辅助函数 TextureFromFile 构造如下:

unsigned int TextureFromFile(const char* path, const string& directory, bool gamma)
{
    string filename = string(path);
    filename = directory + '/' + filename;

    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char* data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << filename << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}

只支持英文,所以如果你的材质命名为中文的可以用 pmx editor 等工具修改一下

Comments: