CH 1 : Logic and Proofs¶
约 1090 个字 预计阅读时间 5 分钟
1.1 Propositional Logic (命题逻辑)¶
Definition¶
- A proposition is a declarative sentence that is either true or false, but not both. 也就是说必须要有意义,比如:
Where am I?
不是Cheer up!
不是X+1=2
不是,its truth depends on x1+1=2
是Hangzhou is the capital of China.
是The teacher exclaimed, “Don’t come into class late again!”
是(说话这个行为是,内容无所谓)
Warning
“This statement is false.” is not a proposition 因为它既不是true也不是false
组成¶
- Propositional variables: small letters such as p, q, r, s …
- Truth value: T (true proposition), F (false proposition)
- Logical operators (Connectives): be used to form compound propositions from existing propositions
- Negation operator \(\neg(NOT)\)
- Conjunction operator \(\land(AND)\)
- Disjunction operator \(\lor(OR)\)
- Exclusive or operator \(\oplus(XOR)\)
- Conditional operator \(\to(IF-THEN)\) 一般来讲是\(p\to q 指If\ p,then\ q或是p\ implies\ q,但是p\ only\ if\ q也是这种表达,请注意哦\)
- Biconditional operator \(\leftrightarrow(IF\ AND\ ONLY\ IF)\)
Precedence
\(\neg\) >\(\land\)=\(\lor\)>\(\to\)=\(\leftrightarrow\)
这也说明: p \(\lor\) q \(\to\) r means (p \(\lor\) q) \(\to\) r
- Converse : 逆命题
- Inverse : 否命题(存疑) 这个inverse实际上是 \(p\rightarrow q \Rightarrow \neg p \rightarrow \neg q\)
- Contrapositive : 逆否命题
1.2 Application of Propositional Logic¶
好像没什么
1.3 Propositional Equivalences¶
Classification¶
- Tautology: compound proposition that is always true
- Contradiction: compound proposition that is always false
- Contingency: compound proposition that is neither a tautology nor a contradiction.
此处仅列出较为难记忆的定理:
- Absorption laws:
- \(p\lor (p\land q)\equiv p\)
- \(p\land (p\lor q)\equiv p\)
- Logical equivalence involving biconditional statements:
- \(p\leftrightarrow q\equiv (p\land q)\lor(\neg p\land \neg q)\)
- \(\neg(p\leftrightarrow q)\equiv p\leftrightarrow \neg q\)
1.4 Predicates and Quantifiers¶
Predicates 谓词¶
Definition¶
A predicate (propositional function) is a statement that contains variables. Once the values of the variables are specified, the function has a truth value.
Predicates 例子
P(X)="x>3"
Q(x,y)="x is the best player in the team y"
R(x,y,z)="x+y=z"
Quantifiers 量词¶
分为Universal quantification \(\forall\) 和 Existential quantification \(\exists\)
需要注意,量词的优先级大于所有的逻辑运算符号,所以:
\(\forall x P(x)\land Q(x) = (\forall x P(x))\land Q(x)\)
因此,一定要记得加括号哦~
Binding Variables¶
- A variable is bound if it is quantified
- A variable is free if it is neither quantified nor specified with a value
Example
\(\exists x\ (x+y)=1\) 中,x是bound,y是free
Logical Equivalences¶
- \(\forall x(A(x)\land B(x))\equiv \forall x A(x) \land \forall x B(x)\)
- \(\exists x(A(x)\lor B(x))\equiv \exists x A(x) \lor \exists x B(x)\)
- \(\forall x(A(x)\lor B(x))\ne \forall x A(x) \lor \forall x B(x)\)
- \(\exists x(A(x)\land B(x))\ne \exists x A(x) \land \exists x B(x)\)
1.5 Nested Quantifiers¶
同种类型的量词嵌套可以互换,但是不同就不行
For example:
- \(\exists x\exists y\ P(x,y)\equiv \exists y\exists x\ P(x,y)\)
- \(\exists x\forall y\ P(x,y) \ne \forall y\exists x\ P(x,y)\)
1.6 Rules of Inference¶
其中尤其需要记住最后一条Resolution
1.7 Introduction to Proofs¶
Some Terminology(术语)¶
- theorem 定理,定律
- Axioms 公理,自明之理 = postulates 假设,前提 即我们假定是对的statements
- lemma 引理
- corollary 推论
- conjecture 推测 如果conjecture被证明为True,它就变成了theorem
Proof by Contraposition 反证法¶
\(P\to Q \equiv \neg Q\to \neg P\)
Vacuous Proof¶
If we know P is false then \(P\to Q\) is vacuously true.
Trivial Proof¶
If we know Q is true, then \(P\to Q\) is true
Proof p by Contradiction¶
步骤:
- 假设p是False
- 推导出一对矛盾的结论
- 说明p是True
1.8 Proof Methods and Strategy¶
举例法和穷举法
Appendix : NormalForms¶
Definition A set of logical operators is called functionally complete if every compound proposition is logically equivalent to a compound proposition involving only this set of logical operators. 即可以用这组逻辑运算表示所有的逻辑运算,如 \(\neg \ and\ \land(\lor)\)
Definition Disjunctive clauses are disjunctions with one or more literals (\(p\ or\ \neg p\)) as disjuncts.
Example
- \(q\lor r\) Disjunctive clause
- \(\neg q\land p\) Conjunctive clause
- \(p\land q\lor r\) Not a clause
Definition A conjunction with one or more disjunctive clauses as its conjuncts is said to be in conjunctive normal form. (Conjunction 是中间都是\(\land\))
Example
- \(p\land (q\lor r)\) √
- \(\neg q\land p\) √
- \(p\land ((p\land q)\lor r)\) ×
相应的,Full Conjunctive Normal Form 就是在conjunctive normal form的基础上要求所有字母都在clauses中出现,如: $$ (p\lor q\lor r)\land(p\lor q\lor \neg r)\land(\neg p\lor \neg q\lor r) $$
另一种表达方式是Full Conjunctive Normal Form是a conjunction of maxterms
Definition Prenex Normal Form 简单来讲,就是将所有Quantifiers放到前面的形式
Example
- \(\forall xP(x)\ \lor \ \forall Q(x)\) 不是
- \(\forall x\forall y \ \neg(P(x)\lor Q(x))\) 是
- \(\neg \forall xR(x)\) 不是
如题,Prenex不需要化简,把所有变量改成不同名字放到前面即可