CH 2 : Basic Structure¶
约 1319 个字 预计阅读时间 7 分钟
2.1 Sets¶
A set is an unordered collection of objects.
通常用大写字母表示集合,小写字母表示集合里的元素
Cardinality 集合的势¶
Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S.
用 |S| 表示 the cardinality of S
Power set¶
Power set of S is the set of all subsets of the set S , 用 \(P(S)\) 表示:\(P(S)=\{x|x\subseteq S\}\)
- \(|S|=n\Rightarrow |P(S)|=2^n\)
- \(S\) is finite and so is \(P(S)\)
Extreme example
(1)\(S=\{\emptyset\}\)
\(P(S)=\{\emptyset ,\{\emptyset\}\}\ \ \ \ |P(S)|=2\)
(2)\(S=\{\emptyset ,\{\emptyset\}\}\)
\(P(S)=\{\emptyset , \{\emptyset \} , \{\{\emptyset\}\} , \{\emptyset ,\{\emptyset\}\}\}\ \ \ \ |P(S)|=4\)
【Example】
一. Show that \(P(A)\in P(B) \Rightarrow A\in B\)
二. Show that \(A\subseteq B \Rightarrow P(A)\subseteq P(B)\)
Cartesian Product 笛卡尔积¶
也就是叉乘: \(A\times B=\{(a,b)|a\in A\land b\in B\}\)
\(A\times \emptyset =\emptyset \times A\)
2.2 Set Operations¶
- Union: \(A\cup B=\{x|x\in A\lor x\in B\}\)
- Intersection: \(A\cap B=\{x|x\in A \land x\in B\}\)
- Difference: \(A-B=\{x|x\in A \land x\notin B\}=A\cap\overline{B}\)
由此得到: \(|A\cup B|=|A|+|B|-|A\cap B|\)
2.3 Functions¶
Let \(A\) and \(B\) be nonempty sets. A unction (mapping or transformations) \(f\) from \(A\) to \(B\):
\(A\) is called domain ,\(B\) is called codomain
\(f(a)=b\)
- b is called the image of a under f;
- a is called a preimage of b;
NOTATION!
- \(f(\emptyset)=\emptyset\)
- \(f(\{a\})=\{f(a)\}\)
- \(f(A\cup B)=f(A)\cup f(B)\)
- \(f(A\cap B)\subseteq f(A)\cap f(B)\)
The graphs of functions:
几种函数类型¶
- One-to-one / injection / 单射
- \(\forall a\forall b(f(a)=f(b)\to a=b)\)
- Onto / surjection / 满射
- \(\forall b\in B\ \exists a \in A(f(a)=b)\)
- One-to-one and Onto or one-to-one correspondence / bijection / 双射、一一对应
如果存在函数 \(f\) 使得 \(A\) to \(B\) 有个双射,则他们具有相同的势(cardinality)
Monotonic Functions 单调函数
- monotonically (strictly) increasing
- \(\forall x \forall y(x<y\to f(x)<f(y))\)
- monotonically (strictly) decreasing
- \(\forall x \forall y(x<y\to f(x)>f(y))\)
Inverse Functions 逆函数
Function f is invertible iff f is a bijection.
Some important functions¶
- Floor function
- \(\lfloor x\rfloor\)
- Ceiling function
- \(\lceil x\rceil\)
Info
- \(\lfloor -x\rfloor =-\lceil x\rceil\)
- \(\lceil -x\rceil=-\lfloor x\rfloor\)
2.4 Sequence and Summations 数列与求和¶
Definition¶
A sequence is a function from a subset of the set of integers (usually either the set {0, 1, 2, …} or the set {1, 2, 3, …}) to a set S. We use the notation \(a_n\) to denote the image of the integer n. We call \(a_n\) a term of the sequence. (\(\{a_n\}\))
Cardinality of Sets¶
- The cardinality of a set A is equal to the cardinality of a set B, denoted | A | = | B |, iff there exists a bijection from A to B.
- 从A到B有双射,则A和B等势
- If there is an injection from A to B, the cardinality of A is less than or the same as the cardinality of B and we write |A| ≤ |B|.
- 从A到B有单射,则A的势小于等于B
Prove that |(a,b)| = |(0,1)| in R
【Definition】 A set that is either finite or has the same cardinality as the set of positive integers called countable.
- 任何有限的集合或者与整数集等势的集合都称作 countable
- When an infinite set S is countable, we denote the cardinality of S by \(\aleph _0\) ( aleph null ).
- If \(|A|=|Z^+|\) , the set A is countable infinite.
【Example】
Show the set of positive rational numbers \(|Q^+|=|Z^+|\)
所以,有理数集Q是可数的。
【Theorem】 The union of a countable number of countable sets is countable.(可数个可数集的合集是可数的)
实际上,也可以用上述定理证明有理数集可数: 有理数集的势可以看作|Z|个Z的合集的势
【Example】
Prove that the set of real number between 0 and 1 is uncoutable.
The set of functions from N to N is uncountable infinite
把所有函数都列出来,为f1,f2,f3,f4.....,然后你找一个G(n),让G(n)!=fn(n),这样G(n),就不在所有的f里面,所有不可数了
重要结论 : 有理数集是可数的,但是实数集不可数¶
\(|R| =|R\times R|\)
【Example】
Show that \(|[0,1]|=|(0,1)|(Both\ Uncountable)\)
【Theorem】 |R|=|(0,1)|:构造函数即可证明,如\(f(x)=\frac{2}{\pi} \tan(x)\)
【Theorem】 The cardinality of the power set of an arbitrary set has a greater cardinality than the original arbitrary set. 即 \(|P(S)|\ge |S|\)