Skip to content

CH 2 : Basic Structure

约 1319 个字 预计阅读时间 7 分钟

2.1 Sets

A set is an unordered collection of objects.

通常用大写字母表示集合,小写字母表示集合里的元素

Cardinality 集合的势

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S.

用 |S| 表示 the cardinality of S

Power set

Power set of S is the set of all subsets of the set S , 用 \(P(S)\) 表示:\(P(S)=\{x|x\subseteq S\}\)

  • \(|S|=n\Rightarrow |P(S)|=2^n\)
  • \(S\) is finite and so is \(P(S)\)

Extreme example

(1)\(S=\{\emptyset\}\)

\(P(S)=\{\emptyset ,\{\emptyset\}\}\ \ \ \ |P(S)|=2\)

(2)\(S=\{\emptyset ,\{\emptyset\}\}\)

\(P(S)=\{\emptyset , \{\emptyset \} , \{\{\emptyset\}\} , \{\emptyset ,\{\emptyset\}\}\}\ \ \ \ |P(S)|=4\)

【Example】

一. Show that \(P(A)\in P(B) \Rightarrow A\in B\)

\[\begin{gather} P(A)\in P(B) \Rightarrow P(A)\subseteq B \newline \begin{cases} P(A)\subseteq B \newline A\in P(A) \end{cases} \Rightarrow A\in B \end{gather} \]

二. Show that \(A\subseteq B \Rightarrow P(A)\subseteq P(B)\)

\[ \forall x \in P(A),\begin{cases}x\subseteq A \\ A\subseteq B\end{cases} \Rightarrow x\subseteq B\Rightarrow x\in P(B) \Rightarrow P(A)\subseteq P(B) \]

Cartesian Product 笛卡尔积

也就是叉乘: \(A\times B=\{(a,b)|a\in A\land b\in B\}\)

\(A\times \emptyset =\emptyset \times A\)

2.2 Set Operations

  • Union: \(A\cup B=\{x|x\in A\lor x\in B\}\)
  • Intersection: \(A\cap B=\{x|x\in A \land x\in B\}\)
  • Difference: \(A-B=\{x|x\in A \land x\notin B\}=A\cap\overline{B}\)

由此得到: \(|A\cup B|=|A|+|B|-|A\cap B|\)

集合的inference表.png

2.3 Functions

Let \(A\) and \(B\) be nonempty sets. A unction (mapping or transformations) \(f\) from \(A\) to \(B\):

\[ f:A\to B \]
\[ Also\ \forall a(a\in A\to \exists !b(b\in B\land f(a)=b)) \]

\(A\) is called domain ,\(B\) is called codomain

\(f(a)=b\)

  • b is called the image of a under f;
  • a is called a preimage of b;

NOTATION!

  • \(f(\emptyset)=\emptyset\)
  • \(f(\{a\})=\{f(a)\}\)
  • \(f(A\cup B)=f(A)\cup f(B)\)
  • \(f(A\cap B)\subseteq f(A)\cap f(B)\)

The graphs of functions:

\[\{(a,b)|a\in A \land f(a)=b\}\]

几种函数类型

  • One-to-one / injection / 单射
    • \(\forall a\forall b(f(a)=f(b)\to a=b)\)
  • Onto / surjection / 满射
    • \(\forall b\in B\ \exists a \in A(f(a)=b)\)
  • One-to-one and Onto or one-to-one correspondence / bijection / 双射、一一对应

如果存在函数 \(f\) 使得 \(A\) to \(B\) 有个双射,则他们具有相同的势(cardinality)

  • 如何证明函数 f 是单射或是满射?
    • 单射满射的证明方法.png

Monotonic Functions 单调函数

  • monotonically (strictly) increasing
    • \(\forall x \forall y(x<y\to f(x)<f(y))\)
  • monotonically (strictly) decreasing
    • \(\forall x \forall y(x<y\to f(x)>f(y))\)

Inverse Functions 逆函数

Function f is invertible iff f is a bijection.

\[f^{-1}(y)=x\ iff\ f(x)=y\]

Some important functions

  • Floor function
    • \(\lfloor x\rfloor\)
  • Ceiling function
    • \(\lceil x\rceil\)

Info

  • \(\lfloor -x\rfloor =-\lceil x\rceil\)
  • \(\lceil -x\rceil=-\lfloor x\rfloor\)

2.4 Sequence and Summations 数列与求和

Definition

A sequence is a function from a subset of the set of integers (usually either the set {0, 1, 2, …} or the set {1, 2, 3, …}) to a set S. We use the notation \(a_n\) to denote the image of the integer n. We call \(a_n\) a term of the sequence. (\(\{a_n\}\))

Some Useful Summation Formulae

数列和.png

Cardinality of Sets

  • The cardinality of a set A is equal to the cardinality of a set B, denoted | A | = | B |, iff there exists a bijection from A to B.
    • 从A到B有双射,则A和B等势
  • If there is an injection from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  |A| ≤ |B|.
    • 从A到B有单射,则A的势小于等于B

Prove that |(a,b)| = |(0,1)| in R

\[\begin{gather}\frac{x-a}{b-a}=\frac{y-0}{1-0}\newline Let\ f\ be\ function\ from\ A\ to\ B\ that\ y=f(x)=\frac{x-a}{b-a}\\ Then\ y\ is\ a\ bijection\ from\ (a,b)\ to\ (0,1) \end{gather} \]

【Definition】 A set that is either finite or has the same cardinality as the set of positive integers called countable.

  • 任何有限的集合或者与整数集等势的集合都称作 countable
  • When an infinite set S is countable, we denote the cardinality of S by \(\aleph _0\) ( aleph null ).
  • If \(|A|=|Z^+|\) , the set A is countable infinite.

【Example】

Show the set of positive rational numbers \(|Q^+|=|Z^+|\)

\[ \begin{gather} \forall x \in Q^{+},x=\frac{p}{q},\ p,q\in Z^+ \\Let\ S=\{(p,q)|p,q\in Z^{+}\}=Z^{+}\times Z^{+}\\ \begin{cases} |Q^+|\le |S|\\|S|=|Z^+|\\|Z^+|\le |Q^+| \end{cases}\Rightarrow |Q^+|=|Z^+| \end{gather} \]

所以,有理数集Q是可数的。

【Theorem】 The union of a countable number of countable sets is countable.(可数个可数集的合集是可数的)

实际上,也可以用上述定理证明有理数集可数: 有理数集的势可以看作|Z|个Z的合集的势

【Example】

Prove that the set of real number between 0 and 1 is uncoutable.

\[ \begin{gather} A=\{x|x\in (0,1)\land x\in R\}\\ (1)|Z^+|\le|A|\\ B=\{\frac{1}{n+1}|n\in Z^+\}\\ \therefore |B|=|Z^+|\\ \because B\subseteq A\\ \therefore |Z^+|<=|A|\\ (2)|Z^+|\ne |A|\\ \end{gather} \]

补充2.png

\[ \begin{cases} |Z^+|\le|A|\\|Z^+|\ne |A| \end{cases}\Rightarrow |Z^+|<|A| \]

The set of functions from N to N is uncountable infinite

把所有函数都列出来,为f1,f2,f3,f4.....,然后你找一个G(n),让G(n)!=fn(n),这样G(n),就不在所有的f里面,所有不可数了

重要结论 : 有理数集是可数的,但是实数集不可数

\(|R| =|R\times R|\)

【Example】

Show that \(|[0,1]|=|(0,1)|(Both\ Uncountable)\)

\[ \begin{array}l (1)B\subseteq A \Rightarrow |B|\le|A|\\ (2)Let\ g(x)=\frac{1}{2}x+\frac{1}{4},x\in [0,1]\\ for\ g(x)\ \text{is a bijection from}\ [0,1]\ to\ [\frac{1}{4} , \frac{3}{4}].\\ \therefore |A|\le|B|\\ \text{Therefore}\ |A|=|B| \end{array} \]

【Theorem】 |R|=|(0,1)|:构造函数即可证明,如\(f(x)=\frac{2}{\pi} \tan(x)\)

【Theorem】 The cardinality of the power set of an arbitrary set has a greater cardinality than the original arbitrary set. 即 \(|P(S)|\ge |S|\)

注意理解题意

注意理解体艺集合的势.png

  • 这题中,两个Hotel都有Countable Infinite个rooms,因此实际上是让我们做一个一一映射:
    • 对于当前住在2n的人,移到当前Hotel的room n
    • 对于当前住在2n-1的人,移到New Hotel的room n
Comments: